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ABSTRACT 
We present a pattern recognition framework to improve 
committee machines of deep convolutional neural networks (deep 
CNNs) and its application to static facial expression recognition 
in the wild (SFEW). In order to generate enough diversity of 
decisions, we trained multiple deep CNNs by varying network 
architectures, input normalization, and weight initialization as 
well as by adopting several learning strategies to use large 
external databases. Moreover, with these deep models, we formed 
hierarchical committees using the validation-accuracy-based 
exponentially-weighted average (VA-Expo-WA) rule. Through 
extensive experiments, the great strengths of our committee 
machines were demonstrated in both structural and decisional 
ways. On the SFEW2.0 dataset released for the 3rd Emotion 
Recognition in the Wild (EmotiW) sub-challenge, a test accuracy 
of 57.3% was obtained from the best single deep CNN, while the 
single-level committees yielded 58.3% and 60.5% with the simple 
average rule and with the VA-Expo-WA rule, respectively. Our 
final submission based on the 3-level hierarchy using the VA-
Expo-WA achieved 61.6%, significantly higher than the SFEW 
baseline of 39.1%. 

Categories and Subject Descriptors 
I.4.9 [Image Processing and Computer Vision]: Applications 

Keywords 
Hierarchical Committee; Exponentially-Weighted Decision 
Fusion; Deep Convolutional Neural Network 

1. INTRODUCTION 
    Committee machines (also known as classifier ensembles) 
generally yield a better performance than a single classifier [1, 2], 
and thus have extensively applied in various research fields 
including vision [3, 4], speech [5, 6], text [7], and bio-data [8]. 
From previous studies on designing a good committee to 
outperform its individual members, generating diverse decisions 
from various individuals has been shown to be crucial in 
providing complementary information about input data [9, 10]. 

 

 
 

Figure 1. The overall system for facial expression recognition 
 

    With recent advances in deep learning and parallel computing, 
forming a committee of multiple deep neural networks was 
presented in [11, 12], has attained impressive successes [13-15], 
and now becomes a widely used approach [16-18]. Particularly, in 
this paper, we investigate the multi-column deep neural network 
(MCDNN) [14] for static facial expression recognition in the wild 
(SFEW). The standard MCDNN is a committee of deep 
convolutional neural networks (deep CNNs) with a simple 
averaging decision rule in a single structure level. Since the 
MCDNN has already proved its superiority in many visual 
classifications, we expect that its excellence in recognition could 
also be demonstrated in SFEW. 

    More importantly, we present 2 simple yet effective ways to 
improve the MCDNN: ‘training more diverse individuals’ and 
‘forming a better committee in both decisional and structural 
aspects’. The former is achieved by designing various network 
architectures in addition to applying the commonly-used schemes 
(e.g., different input normalizations and different random weight 
initialization). Furthermore, we adopt several strategies for using 
external data in training deep CNNs in order to pursue more 
diverse decisions and errors. The latter is achieved with a better 
ensemble rule based on an exponentially-weighted decision fusion. 
Moreover, we build a hierarchical committee which can make 
more reliable decisions. As structural levels in the committee 
become higher, the consensus of multiple sub-groups could be 
formed and thus enhance the reliability of decisions. The overall 
proposed system is shown in Figure 1. 

    Our framework based on the improved committee machines of 
deep CNNs is tested on the SFEW 2.0 database [19], released for 
a sub-competition in the 3rd Emotion Recognition in the Wild 
2015 (EmotiW2015) challenge. The remainder of this paper 
describes the proposed approach in detail, experimental results 
(including our test-label submissions for this SFEW competition), 
and conclusions. 
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2. PROPOSED APPROACH 

2.1 Deep CNNs as Individual Members 
    A deep CNN consists of several feature extraction stages (with 
alternating convolutional and pooling layers), followed by a 
recognition stage (with fully-connected layers) [15, 20]. Because 
of its excellent classification ability as well as hierarchical feature 
development mimicking the human visual system, we selected the 
deep CNN for the base member of a committee as in a standard 
MCDNN. 

    To build diverse deep CNNs in standard MCDNNs, being 
trained with ‘different training data sets’ was mainly focused 
rather than using ‘different classifiers’. The effect of ‘different 
training data’ was achieved by several preprocessing methods on 
the original data such as deformation and normalization. For the 
effect of ‘different classifiers’, the MCDNNs applied multiple 
random seeds for weight initialization, but the identical network 
architectures were used for all individual members. We believed 
that various network architectures also largely contributed to 
obtaining different classifiers and thus to increasing diversity of 
decisions in forming a committee. Therefore, we applied various 
architectures for deep CNNs as well as differently preprocessed 
data and different weight initialization. Furthermore, we explored 
several training strategies for making use of external data along 
with the SFEW data in order to pursue more diverse errors. The 
experimental details about how to build the individual deep CNNs 
and their recognition accuracies are presented in Section 4. 

2.2 Exponentially-Weighted Decision Fusion 
    When forming a committee, how to combine decisions from 
individual members has been extensively investigated. In this 
paper, we first explored 3 widely-used rules for decision fusion [1, 
2]: the majority voting, median rule, and simple average rule. 
Then, we introduced an effective combination rule based on 
exponential weighting to give more weights on well-performed 
individuals. 
    The ‘majority voting’ directly uses the predicted class labels to 
select a class with the largest number of votes. On the other hands, 
instead of using the labels, the ‘median rule’ and ‘simple average 
rule’ use the class-related continuous confidences or scores. In 
our experiments, the median/simple average rule decided a class 
with the highest median/average of posterior class probabilities 
yielded from deep CNNs. For these 3 rules, the individuals have 
equal rights for participation so that any reliability or importance 
on each of their decision is not considered. 
    A straightforward way to regard the importance of members’ 
decisions is to compute a weighted mean of class scores with 
assigning the weights as validation performances. We denoted it 
as the ‘VA-Simp-WA’ rule, short for the validation-accuracy-
based simple weighted average. However, when the committee 
members yield the similar accuracies and thus almost equal 
weights are used, the VA-Simp-WA does not differ from the 
‘simple average rule’. Our exponentially-weighted decision fusion 
has been motivated by considering the aforementioned case. In 
determining the weights, we adopted an exponential function 
which influences on the differences between numbers (e.g. ‘31-
21=1’ < ‘32-22=5’). We expected that this characteristic of 
exponent can give more weights on the members with (even 
slightly) higher accuracies. 
    Let us denote our method as the ‘VA-Expo-WA’ rule, short for 
the validation-accuracy-based exponentially-weighted average, 

and continue our discussion with mathematical notations. 
Suppose a member model m (=1,...,M) with its validation accuracy 
of zm provides a posteriori class probability vector sm for an input 
pattern. Then, the final ensemble of M models’ decisions in the 
VA-Expo-WA becomes 
 

                    (1) 
 

where a decision weight dm reflects the normalized significance of 
the model m’s decision (0 dm 1) and an exponent q is a hyper-
parameter to determine how much the qualified members are 
emphasized (q>1) or de-emphasized (q 1). Finally, a class with 
the highest value in exponentially-weighted class probabilities is 
chosen. Here, the value of q is found by a simple uniform search: 
scanned over [-50:0.1:150] and selected to provide the maximum 
performance on validation data after the fusion. The scanning 
procedure and the corresponding decision weights for the selected 
q are illustrated in Figure 2. We confirmed that this searching 
method required little additional computation, while it found a 
proper q which can improve the generalization on validation data. 
Note that the VA-Expo-WA rules with q=0 and q=1 are identical 
to the simple average rule and the VA-Simp-WA, respectively. 
The superior performance of our VA-Expo-WA rule compared to 
the commonly-used decision fusion rules are shown in Section 5. 

2.3 Hierarchical Committee 
    The existing literatures using hierarchical architectures of 
committees aimed to divide a hard problem into the easier ones 
(based on the divide-and-conquer strategy) with a statistical 
framework [21, 22] and/or to efficiently combine the outputs of 
different classifiers trained on heterogeneous features [3, 23]. 
Meanwhile, we constructed hierarchical committees of deep 
CNNs with the following procedure according to the 2 expected 
merits. 
 

1) Organize the M0 individual members into the 1st level sub-groups, 
having some overlapped members. After that, make a 

decision for each group according to the 1st level decision fusion rule. 
2) Collect all sub-groups’ decisions in the lth level,  

where l (= 1, …, L-1) and ml are indices for the level and the sub-
group, respectively. Then, re-organize them into the (l+1)th level 
groups, and make a decision for each group according to the (l+1)th 
level decision fusion rule. 

3) Repeat ‘2)’ until reaching to get a final decision at the last Lth level. 
 

 
Figure 2. (a) The training and validation accuracies (%) as an 
exponent ‘q’ is scanned in the exponentially-weighted decision 
fusion and (b) the corresponding decision weights for the 
selected q. This result was obtained when 108 models formed a 
committee with the VA-Expo-WA rule (see Section 5). 
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The first merit is that, more reliable decisions could come from 
the strong consensus of multiple sub-groups in higher structural 
levels. Second, the increased diversity of errors could be obtained 
by setting some members to be overlapped in certain sub-groups. 
Then, depending on other members in these groups, the 
overlapping members differently contribute to the next level 
decision. Since the former is quite intuitive, let us explain the 
latter with a toy example. Suppose a 2-class problem and 5 
member classifiers of (a, b, c, d, e) who claim the class label for 
an input sample as (1, 1, 1, 2, 2), respectively. When they are 
divided into 2 sub-groups, G1: {a, b, c} and G2: {c, d, e}, with an 
overlapping member ‘c’ and the majority voting is applied, the ‘c’ 
differently contributes to the final decision. More specifically, 
without grouping, there is no doubt of the selection of class 1 by 3 
votes from a, b, and c among 5 members. However, with grouping, 
both classes get the equal number of mid-level decisions (the class 
1 from G1 and the class 2 from G2) due to the different impacts of 
c’s claim on both sub-groups, so the final decision depends on the 
mean class probabilities. We expected that these groups with 
overlapping members could lead to more various decisions in the 
low structural levels, finally serving as diverse errors in the last 
level. See Section 6 for the experimental details and favorable 
classification results of our hierarchical committees, which 
outperform the standard single-level committees. 

3. FACE REGISTRATION 

3.1 SFEW 2.0 Database 
    The SFEW 2.0 database [19] was created by extracting frames 
from emotional movie clips in the AFEW data corpus [24]. The 
task was to assign 7 expression labels (angry, disgust, fear, happy, 
sad, surprise, and neutral) to these frames in close-to-real world 
conditions. For the training, validation, and test set, the SFEW 
database contains 958, 436, and 372 images, respectively.  
 

 
Figure 3. (a) Face registration based on a 2-D alignment, (b) 
our multi-pipeline-based alignment, and (c) examples of 
aligned faces for test data. In (b), the terms ‘IMG’, ‘HistEq’, ‘LOC’, 
and ‘Conf’ are short for ‘image’, ‘histogram equalized’, ‘location’, and 
‘confidence’, respectively. In (c), faces in the corresponding positions 
between oA and pA are processed from the same test image. 

3.2 Face Registration 
    For face registration, we conducted a conventional 2-D 
alignment based on eye locations as illustrated in Figure 3(a). To 
improve robustness in face/landmark detection, multiple detection 
pipelines were designed to produce different landmark estimations, 
and the best estimation among them was finally used for the 2-D 
alignment. We used the Viola-Jones (V-J) model [25] and the 
Zhu-Ramanan (Z-R) model [26] for face detection along with the 
IntraFace model [27] for landmark detection. As shown in Figure 
3(b), we considered 4 single pipelines based on the following 
observations: i) some faces, failed by the V-J, could be detected 
by the Z-R, and vice versa, ii) depending on face locations from 
the V-J and Z-R, the landmark estimation of the IntraFace became 
different, iii) the V-J and IntraFace sometimes yielded 
complementary outputs when histogram-equalized images were 
used as input. Among 4 possible landmark sets from those 
pipelines, the landmark set with the highest confidence provided 
from the IntraFace was eventually selected for alignment. 

In Table 1, we compared the performances between our multi-
pipeline-based alignment and single-pipeline-based ones. For 
each data type, we computed the ratio of successful alignments to 
the whole number of samples as well as the ratio of cases where 
only face detection succeeded. Our 4-pipeline-based alignment 
performed better than the single-pipeline ones, implying that 
complementary detection results were obtained from 4 single 
pipelines. Therefore, combining them can lead to the robust face 
registration in real-world conditions. Note that, for training and 
validation data, the erroneous and failed alignments were semi-
automatically processed by hands for a later usage in training deep 
models. However, for testing data, any human intervention was 
not applied in the context of a fully-automatic system. 

Figure 3(c) depicts examples for test faces processed by our 
alignment method and provided from EmotiW2015. As shown in 
the 1st and 2nd rows of the figure, the faces processed from our 
method (oA) were more similarly aligned each other compared to 
the provided alignments (pA). It could lead to superior accuracies 
of oA as denoted in Table 2. However, in addition to oA, we also 
used pA in training deep models for the following reasons: for 
giving deformation effects (such as translation and rotation) to 
ours and for providing complementary information when either 
oA or pA failed (as shown in the 3rd and 4th rows of the figure). 

 

Table 1. Alignment-success rate (%) of our alignments 

Alignment 
Method 

Success Rate (%) 
Alignment (Both Face & 

Landmark Detection) 
Only  

Face Detection 
Train Valid Test Train Valid Test 

Single-
Pipeline-

Based 

① 70.5 70.4 73.1 1.4 1.1 2.4 
② 71.6 74.1 77.2 2.6 1.8 3.5 
③ 58.6 60.8 57.5 25.5 29.8 30.9 
④ 56.6 56.4 53.5 27.5 34.2 34.9 

Multi-Pipeline-
Based 81.8 83.5 90.1 9.5 6.0 4.0 

 
Table 2. Validation (& testing, if available) accuracy (%) of 

our alignments (oA) and provided alignments (pA) 
Classification Method oA pA 

{LPQ-pHOG} + rbfSVM: baseline [19] - 36.0 (39.1) 
A single deep CNNa:  

PREPiNor – {CNNL – FC3072}R1 52.5 (57.3) 46.8 
A committee of 108 deep CNNsb 

with the VA-Expo-WA rule 54.6 (60.5) 52.2 (56.7) 
a, b For the detailed information, see Section 4.3 and 5, respectively. 
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4. DESIGNING AND TRAINING 
INDIVIDUAL COMMITTEE MEMBERS 
    In this section, we first described how to design multiple deep 
CNNs to pursue diverse errors in forming a good committee. Next, 
for training these models, how to make use of external data along 
with the SFEW data was presented with other learning details. 
Finally, classification results of individual models were examined.  

4.1 Designing Individual Deep CNNs 
    With the aim of getting diversity of decisions and errors from 
individual members, we designed 216 deep CNNs using different 
input preprocessing methods, random weight initializations, and 
network architectures. A single deep CNN is denoted as (2) and 
the detailed explanations for sub-notations are followed. 

                    (2) 

 
 

4.1.1 Preprocessing type of data 
    We considered various normalization techniques on differently 
aligned faces. Each raw image was rescaled from 0 to 1 via a min-
max normalization. To reduce illumination variation in images, as 
used in [28], the isotropic diffusion based normalization [29] 
from INface toolbox [30] was applied with the default parameter 
setting. Moreover, to enhance contrast for each image, as used in 
[14], we applied the histogram equalization implemented in 
MATLAB. The examples of normalized images are shown in 
Figure 4(a). 

For different input deformations (e.g., translation and rotation), 
we used the aligned faces provided from EmotiW2015 (pA) as 
well as our aligned faces (oA), as previously introduced in Section 
3.2. Furthermore, some faces erroneously aligned by our method 
can be compensated by the provided alignments, thus leading to 
more diverse and complementary information about input data. 

4.1.2 Architectures of deep CNNs  
    As the baseline architecture, we referred to Tang’s deep CNN 
[31], the winner model of ICMLW2013’s facial expression 
recognition challenge [32]. It consisted of the 1 input-transform 
and 3 convolution+pooling stages, followed by fully-connected 
hidden and output layers. In the input-transform stage for image 
mirroring and translating, data were augmented by extracting 
42x42 patches from the 48x48 faces. The subsequent layers 
corresponded to a configuration of {CNNM - FC3072} in our 
notation (see Table 3), except for average-pooling in the 2nd and 
3rd stages of Tang’s model. To get more specific settings, see his 
implementation at [33]. 

 
Figure 4. (a) Various normalizations on the aligned validation 
faces and (b) a deep CNN architecture 

Based on Tang’s architecture, we designed diverse deep CNNs 
by changing the sizes of filters for various receptive fields and by 
changing the number of neurons in a fully-connected hidden layer 
as denoted in Table 3. The CNNM had a medium-size receptive 
field (with 5x5, 4x4, and 5x5 filters for each conv layer, 
respectively), the CNNL had a relatively large receptive field 
(with 7x7 filters for all conv layers), and the CNNS had a 
relatively small one (with 3x3 filters for all conv layers). For all 
CNN types, the strides and pads were properly set to ensure the 
same sizes of output maps (5x5 @64) in the max-pool 3 layer. 
Moreover, for each CNN type, 4 kinds of fully-connected hidden 
layer (FC) were used. In this FC layer, the dropout [34] was 
applied to reduce over-fitting in training deep models. Notice that, 
from Tang’s model, we modified the pooling layers in the 2nd and 
3rd stages from average-pooling to max-pooling, since it provided 
better classification results in our preliminary experiments. For 
the nonlinearity, Rectified Linear Unit (ReLU) activations were 
applied for all conv and penultimate layers, and a softmax 
activation was for the output layer. 

Table 3. Configuration of deep CNNs 

Layera CNNS CNNM CNNL 
mapsb kernelc maps kernel maps kernel 

input 42x42 
@1 - 42x42 

@1 - 42x42 
@1 - 

conv 1 42x42 
@32 

3x3, 
(1,1) 

42x42 
@32 

5x5, 
(1, 2) 

42x42 
@32 

7x7, 
(1, 3) 

max 
-pool 1 

21x21 
@32 

2x2,  
(2, 0) 

21x21 
@32 

3x3,  
(2, 1*) 

21x21 
@32 

2x2,  
(2, 0) 

conv 2 19x19 
@32 

3x3, 
(1, 0) 

20x20 
@32 

4x4, 
(1, 1) 

19x19 
@32 

7x7, 
(1, 2) 

max 
-pool 2 

10x10 
@32 

2x2, 
(2, 1*) 

10x10 
@32 

3x3, 
(2, 1*) 

10x10 
@32 

2x2,  
(2, 1*) 

conv 3 10x10 
@64 

3x3, 
(1, 1) 

10x10 
@64 

5x5,  
(1, 2) 

10x10 
@64 

7x7, 
(1, 3) 

max 
-pool 3 

5x5 
@64 

2x2,  
(2, 0) 

5x5 
@64 

3x3,  
(2, 1*) 

5x5 
@64 

2x2,  
(2, 0) 

fc 
hidden 

 FC3072: 3072 neurons with a dropout probability = 0.8, 
 FC2048: 2048 neurons with a dropout probability = 0.5, 
 FC1024: 1024 neurons with a dropout probability = 0.5, or 
 FC512: 512 neurons with a dropout probability = 0.5 

fc 
output 7 neurons (one per class) 

a conv, max-pool, fc: convolutional, max-pooling, fully-connected. 
b maps: the size of output maps @  the number of output maps. 
c kernel: the size of kernels, (stride, pad) where ‘stride’ refers to spacing 
size of kernels, ‘pad without an asterisk*’ refers to zero-padding to all 4 
spatial directions (top, bottom, left and right directions) of input maps, 
and ‘pad with an asterisk*’ refers to zero-padding to the top and left. 
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4.2 Training Individual Deep CNNs 
4.2.1 Usage of external data 
    The size of SFEW data is quite small to train deep CNNs. 
Inspired by [28], we also decided to use 2 external databases 
along with the SFEW data for training models: the Facial 
Expression Recognition 2013 database (FER-2013 DB) [35] and 
the Toronto Face Dataset (TFD) [36]. The FER-2013 DB, 
released for ICMLW2013’s sub-challenge [32], was created using 
the Google image search API. Since realistic facial expressions 
were collected from the internet, large variations reflecting real-
world conditions existed in the FER-2013 DB. From this dataset, 
28,698 training faces (after removing 11 non-number-filled 
images from original training data) and 3,589 private testing faces 
were used for our experiment. The TFD was constructed by 
merging together 30 pre-existing face datasets. The faces in TFD 
were strictly aligned and almost all of them were fully-frontal. 
From the TFD, 4,178 labelled faces were used. Notice that both 
datasets contained 48x48 gray-scale faces labelled with the 
identical 7 expression categories used in the SFEW data.  

After determining the external databases to be used, we 
explored how to use them together with the SFEW data for 
training models. The following 3 strategies were considered: 

      i. Random initialization ⇒ In learning, using data as follows: 
              {FER-2013 DB + TFD} for ‘training’ 
              {SFEW Train + SFEW Valid} for ‘validation’ 
      ii. Random initialization ⇒ In learning, using data as follows: 
              {FER-2013 DB + TFD + SFEW Train} for ‘training’ 
              {SFEW Valid} for ‘validation’ 
 

      iii. Initialization from a pre-trained model constructed by using 
              {FER-2013 DB Train + TFD} for ‘training’ 
              {FER-2013 DB Test} for ‘validation’ 
           ⇒ In learning, using data as follows: 
              {SFEW Train} for ‘training’ 
              {SFEW Valid} for ‘validation’ 
 

In [28], the strategies ‘i’ and ‘ii’ were discussed to train a deep 
CNN which yielded per-frame predictions for video-based 
emotion recognition. In their experiment, the strategy ‘i’ was 
finally selected based on a better validation performance. In 
addition to the ‘i’ and ‘ii’, we also investigated one type of 
transfer learning scheme as denoted in the strategy ‘iii’ [37]. 
 

 
 

Figure 5. Comparison of 3 strategies for using external data 
along with SFEW data in training: (a) learning curves from a 
deep CNN and (b) validation accuracies for 12 deep CNNs 

To figure out the most proper usage of external data for this 
SFEW competition, we evaluated the performances of several 
models trained differently with the aforementioned 3 strategies. 
Specifically, the following 12 deep CNNs having various 
architectures were used:  

 

 

             (3) 
 

Figure 5(a) depicts learning curves during training a deep CNN of 
{CNNM - FC2048} with 3 strategies. The strategy ‘iii’ provided 
superior performances not only at the initial epoch but also at the 
convergence. Figure 5(b) shows validation accuracies for all 
examined training strategies and network architectures. 
Regardless of architectures, the ‘iii’ outperformed the other two. It 
indicates that the transfer learning scheme is effective because of 
representing more similar and suitable feature distributions 
between training and validation data. Therefore, we eventually 
decided to use the strategy ‘iii’. We first pre-trained 108 deep 
CNNs using two external data of FER-2013 DB and TFD. Then, 
216 models were fine-tuned using the SFEW data: 108 models 
fine-tuned using oA + 108 using pA. Note that, for the last two 
submissions, in addition to these 216 models trained with the ‘iii’, 
we also incorporated the 24 models with the ‘i’ and ‘ii’ to form a 
committee for a better handling of various facial expressions. 

4.2.2 Other training details 
    We used the MatConvNet toolbox [38] on NVIDIA GeForce 
GTX 690 GPUs. Each deep CNN was trained using the stochastic 
gradient descent with a batch size of 200 and momentum of 0.9. 
Except for the last fully-connected layer with weight decay of 
0.002, weight decay of 0.0001 was applied for all other layers. 
Moreover, the learning rate was equal for all layers, while its 
value started from 0.004 and became half at every 25 epoch. 
During total 100 epochs, we selected a model yielding the max 
validation performance. 

To avoid over-fitting, the dropout and data augmentation were 
applied. A dropout probability of 0.8 was used for deep CNNs 
with FC3072, while 0.5 was used for FC2048, FC1024, and 
FC512. The training data were augmented by 10 times, through 
using 5 crops of size 42x42 (1 from resizing an original 48x48 
face and 4 from extracting its 4 corners) and their horizontal 
flopping. At the test phase, to maintain consistency with the 
training, 10 patches extracted from each face were fed to the 
model and the corresponding 10 predictions were averaged to 
produce a final prediction. 

4.3 Classification Performance of Deep CNNs 
    For 216 deep CNNs trained with the strategy ‘iii’ (a transfer 
learning scheme), their classification rates to validation data were 
reported in Table 4. Our best single model with the highest 
validation accuracy of 52.5% was PREPiNor,oA – {CNNL – 
FC3072}R1. This model became the 1st submission for the SFEW 
competition, yielding a test accuracy of 57.3%. 

We also analyzed general tendencies in performances of deep 
CNNs. In the aspect of face alignments, the 108 models trained 
using oA showed a better mean accuracy than those using pA. 
Furthermore, to examine the trends according to preprocessing 
types and CNN architectures, we computed the mean accuracy of 
36 models for each preprocessing (per-PREP group) and for each 
CNN (per-CNN group). The illumination normalization was 
superior to other preprocessing types, and the CNNM with the 
medium size of receptive field performed better than other CNN 
architectures. 
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Table 4. Validation accuracy (%) of individual deep CNNs. 108 models (top) trained using our aligned faces and 108 (bottom) using provided 
alignments from EmotiW2015. The highest accuracy for a given architecture (each column) is written in bold. The asterisk* denotes the single best model. 

Aligned Faces 
From Our Method 

(oA) 

CNNS CNNM CNNL Mean (Std) of 
per-PREP group: 
36 models / group 

FC 
3072 

FC 
2048 

FC 
1024 

FC 
512 

FC 
3072 

FC 
2048 

FC 
1024 

FC 
512 

FC 
3072 

FC 
2048 

FC 
1024 

FC 
512 

PREP 
raw, oA 

R1 45.6 45.0 45.4 47.7 49.8 48.4 45.4 47.7 50.0 44.7 45.9 47.9 46.9 
(1.7) R2 46.3 45.0 46.8 45.0 47.5 48.4 49.1 49.1 47.5 46.1 45.0 46.6 

R3 45.0 43.6 47.0 45.6 49.1 47.0 47.3 50.0 48.4 45.9 47.3 46.1 

PREP 
iNor, oA 

R1 48.6 49.5 48.6 49.1 49.1 46.3 50.9 50.2 52.5* 49.5 50.5 52.3 49.2 
(1.6) R2 47.9 46.3 48.4 50.7 52.1 49.5 49.8 50.5 50.2 47.9 48.6 48.2 

R3 48.9 46.3 46.6 49.5 48.6 48.9 47.9 50.7 47.5 47.0 50.5 50.5 

PREP 
cEnh, oA 

R1 45.9 44.5 45.0 45.9 47.5 45.2 48.2 49.1 42.9 41.3 43.4 43.1 45.1 
(2.4) R2 45.2 44.7 43.8 44.0 49.8 47.5 48.2 49.8 45.2 42.9 39.7 41.3 

R3 43.4 43.4 46.3 44.7 48.2 44.7 45.9 45.2 45.6 42.2 43.8 45.2 
Mean (Std) of  

per-CNN group: 
36 models / group 

46.3 
(1.9) 

48.4 
(1.7) 

46.5 
(3.2) 

Total 108 models 
47.0 (2.5) 

 

Aligned Faces 
Provided From 

EmotiW2015 (pA) 

CNNS CNNM CNNL Mean (Std) of 
per-PREP group: 
36 models / group 

FC 
3072 

FC 
2048 

FC 
1024 

FC 
512 

FC 
3072 

FC 
2048 

FC 
1024 

FC 
512 

FC 
3072 

FC 
2048 

FC 
1024 

FC 
512 

PREP 
raw, pA 

R1 43.8 43.6 40.8 45.7 48.0 45.2 46.1 45.4 44.5 44.3 45.7 46.8 44.5 
(2.0) R2 43.1 41.9 42.9 40.5 45.9 45.4 46.8 46.4 45.4 43.8 42.9 45.4 

R3 43.8 39.6 42.9 41.7 47.1 45.7 46.1 44.5 45.0 44.3 45.0 47.3 

PREP 
iNor, pA 

R1 46.4 43.8 45.4 42.6 47.5 44.7 48.7 45.4 46.8 44.0 47.1 45.0 46.1 
(1.9) R2 47.5 44.3 43.6 46.4 46.8 46.6 48.7 45.4 47.3 45.9 49.0 47.8 

R3 46.6 45.2 43.6 46.1 46.8 45.7 45.4 52.2 47.8 45.7 43.3 46.1 

PREP 
cEnh, pA 

R1 44.0 39.1 42.2 41.2 46.4 46.1 46.6 47.8 42.2 42.4 42.2 43.8 43.5 
(2.4) R2 43.8 41.9 44.3 43.6 47.5 45.4 44.7 47.8 41.7 42.2 43.6 43.1 

R3 43.3 40.8 42.4 40.5 46.4 41.0 44.0 46.8 40.3 39.3 41.9 44.3 
Mean (Std) of  

per-CNN group: 
36 models / group 

43.3 
(2.0) 

46.3 
(1.8) 

44.5 
(2.2) 

Total 108 models 
44.7 (2.4) 

5. EXPONENTIALLY-WEIGHTED 
DECISION FUSION 
    Before moving on examining a hierarchical committee, we 
demonstrated the superiority of our VA-Expo-WA rule in a 
conventional single-level committee, by comparing it to the 
widely-used rules for decision fusion. Here, we formed the 3 
committees consisting of 108 models trained using our aligned 
faces (oA; corresponding to the case of Figure 2), 108 models 
using provided alignments (pA), and 216 using both alignments of 
oA and pA. As shown in Table 5, regardless of the committee 
types, our VA-Expo-WA rule outperformed all other rules. In 
addition, as we expected, the VA-Simp-WA did not much differ 
from the simple average rule since individual models produced 
even and similar validation accuracies as denoted in Table 4.  
 

Table 5. Validation (& testing, if available) accuracy (%) of 
single-level committees with various decision fusion rules 

Decision Fusion 
Rule 

Single-Level Committee 
108 models 

from oA 
108 models 

from pA 
216 models 
from both 

Majority Voting 51.6 48.2 50.7 

Median 50.7 47.3 49.8 

Simple Ave. (q=0) 50.2 (58.3) 47.8 49.8 

VA-Simp-WA (q=1) 50.7 47.8 49.8 

VA-Expo-WA 54.6 (60.5)a 52.2 (56.7)b 56.4 (60.0)c 
a, b, c For single-level committees with the VA-Expo-WA rule, the values 
of exponent q were selected as 43.8, 58.1, and 60.5, respectively. 

 
Meanwhile, it is worth noting that even though the committee 

of 216 models with the VA-Expo-WA provided the highest 
classification rate on validation data, its test rate was not the best. 
The best test accuracy of 60.5% was achieved by the committee of 
108 models using oA. It may imply that, at some level yielding a 
maximum validation performance, adding other models to the 
committee did not work properly with the VA-Expo-WA. Rather, 
it seemed to harm the generalization on test data because too 
many models were participated to improve the final validation 
accuracy of the committee. 

We further investigated the strength of our VA-Expo-WA rule 
that can reveal the importance or contribution of each individual 
on a final ensemble. Figure 2(b) shows the decision weights of 
108 models using oA, and we computed the threshold above 
which a certain portion of the total weights was covered. The 6, 
18, and 42 models were in charge of about 50%, 75% and 95% of 
the total, respectively. These information could be used for model 
selection and pruning. 

6. HIERARCHICAL COMMITTEE 
    To construct hierarchical committees, we organized 216 deep 
CNNs (obtained with the training strategy ‘iii’) into 12 sub-
groups for the 1st level, having some overlapping members: 
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Each sub-group consisted of 36 deep CNNs. The 3 per-PREP 
groups (G1-G3) and 3 per-CNN groups (G7-G9) were formed 
from 108 models trained using our aligned faces (oA), and 
similarly the 3 per-PREP (G4-G6) and 3 per-CNN (G10-G12) 
groups were from 108 models using provided alignments (pA). 

There were several ways to build the hierarchy in ‘structural’ 
aspects (regarding the number of hierarchical levels and the 
structure for re-combination of higher-level decisions) and in 
‘decisional’ aspects (regarding the decision fusion rule for each 
level). At an earlier phase of experiments, we submitted the 
predicted test labels obtained from adopting the VA-Expo-WA 
rule for all structural levels in the hierarchy. From these 
submissions, we got some unexpected results; validation 
accuracies were higher than our previous submissions, but testing 
accuracies dropped. However, we learned an empirical lesson; 
applying the VA-Expo-WA rule for all levels of a hierarchy may 
have a negative impact on generalization for test data, since the 
exponent selection was optimized for the validation performance. 
Therefore, we decided to use the VA-Expo-WA rule only for the 
1st level. For decision fusions in higher levels, the majority voting 
and simple average rules were used for a better generalization. 

    We first considered a simple 2-level hierarchical structure as 
illustrated in Figure 6(a). With a fixed VA-Expo-WA rule of the 
1st level, we varied decision fusion rules of the 2nd level as the 
majority voting or simple average rules. Moreover, as mentioned 
in Section 4.2.1, for handling more various face expressions and 
pursuing more diverse errors, we additionally examined 24 
models from the training strategies ‘i’ and ‘ii’. These models were 
also formed into the 1st level groups, having the 12 models each: 
 

 
 

 
 

Figure 6. Diagrams of 2- and 3-level hierarchical committees 

Table 6. Validation (& testing, if available) accuracy (%) of 
hierarchical committees with using the VA-Expo-WA rule as 

the 1st level decision fusion 

2-Level 
Hierarchical 
Committee 

Decision Fusion in the 2nd Level 

Simple Ave. Rule Majority Voting 

(a) 53.4 56.2 
(b) 53.9 56.2 (60.2) 

 

3-Level 
Hierarchical 
Committee 

Decision Fusion in the 2nd & 3rd Levels 
Simple Ave. Rule & 

Majority Voting 
Majority Voting & 

Majority Voting 
(c) 53.9 (61.6) 56.2 
(d) 52.5 52.8 (61.6) 

 
 

By adding these 2 groups’ decisions to the 1st level, we built 
another 2-level hierarchy as shown in Figure 6(b). For clarity in 
the subsequent discussion, we shall to name each hierarchy as 
each index with a parenthesis in Figure 6. The top part of Table 6 
denotes classification performances of the 2-level hierarchies. For 
both (a) and (b), the majority voting in the 2nd level performed 
better than the simple average rule. However, the hierarchy (b) 
with a great validation accuracy of 56.2% did not yield a better 
test accuracy compared to previous submissions. We suggested 
the following reason; the added 2 groups, g1-g2, to the 1st level 
were expected to produce more diverse decisions based on 
different training strategies, but their impacts on the 2nd level were 
quite small due to competing with 12 decisions from G1-G12. 

Hence, we decided to reduce the influence of decisions from 
G1-G12 on the final prediction by forming the 3-level hierarchical 
committee as shown in Figure 6(c) and 6(d). Note that these 3 
levels on the side of G1-G12 not only reduced the number of 
decisions (from 12 in the hierarchy (b) to 4 in the (c) or to 2 in the 
(d)) but also made compact and reliable decisions passing through 
multiple levels. Here, 2 types of decision fusions in the 2nd and 3rd 
levels were considered, as demonstrated in the bottom part of 
Table 6. Applying majority voting for both 2nd and 3rd levels 
showed better validation accuracies than using the simple average 
rule for the 2nd level with the majority voting for the 3rd level. 
More importantly, in the test performances, these 2 types of 3-
level hierarchies did not differ from each other but were superior 
to the 2-level hierarchies. It indicates that, as forming a 
hierarchical committee with higher levels, the structural 
consideration is more important than the decision fusion method 
to give enough diversity in decisions. 

7. CONCLUSION 
    In this paper, we present a framework based on committee 
machines of deep CNNs. To generate diverse errors for a better 
committee, we first constructed multiple deep CNNs as individual 
committee members. Here, deep models were trained by applying 
various network architectures, several strategies to use external 
data, and different input preprocessing and random initialization. 
With these individuals, we formed hierarchical committees which 
adopted the valid-accuracy-based exponentially-weighted average. 
This exponentially-weighted decision fusion was superior to other 
commonly-used ensemble methods by increasing a generalization 
capability. Furthermore, the hierarchical structure indeed made 
more reliable decisions with the consensus of various sub-groups.  
    Our proposed approach was demonstrated on the SFEW 
competition data released for the EmotiW 2015 sub-challenge. To 
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sum up our submissions, the test accuracy of the best single deep 
CNN was 57.3%, while the single-level committees of 108 models 
trained using our aligned faces yielded 58.3% with the simple 
average rule and 60.5% with the exponentially-weighted decision 
fusion. Furthermore, the last two submissions based on 3-level 
hierarchical committees of total 240 deep CNNs achieved 61.6%, 
greatly outperforming the SFEW baseline of 39.1%. We believe 
that the superiority of our committee machines could further be 
drawn in other pattern recognition problems as well as SFEW.  

In our future works, we will design various and good objective 
functions in training individual deep CNNs in order to get more 
diverse decisions. Moreover, how to determine the structure of 
hierarchical committees will be intensively studied in both 
academic and engineering manners. 
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