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Deep CNNs Along the Time Axis With Intermap
Pooling for Robustness to Spectral Variations

Hwaran Lee, Geonmin Kim, Ho-Gyeong Kim, Sang-Hoon Oh, and Soo-Young Lee

Abstract—Convolutional neural networks (CNNs) with con-
volutional and pooling operations along the frequency axis
have been proposed to attain invariance to frequency shifts
of features. However, this is inappropriate with regard to the
fact that acoustic features vary in frequency. In this paper, we
contend that convolution along the time axis is more effective.
We also propose the addition of an intermap pooling (IMP)
layer to deep CNNs. In this layer, filters in each group extract
common but spectrally variant features, then the layer pools the
feature maps of each group. As a result, the proposed IMP CNN
can achieve insensitivity to spectral variations characteristic of
different speakers and utterances. The effectiveness of the IMP
CNN architecture is demonstrated on several LVCSR tasks. Even
without speaker adaptation techniques, the architecture achieved
a WER of 12.7% on the SWB part of the Hub5°2000 evaluation
test set, which is competitive with other state-of-the-art methods.

Index Terms—Acoustic modeling, convolutional neural

networks (CNNs), intermap pooling (IMP) layer.

I. INTRODUCTION

COUSTIC modeling with deep learning has demon-
A strated remarkable performance improvements in auto-
matic speech recognition [1]-[4]. Deep neural networks (DNN5s)
are trained to label each frame of processed speech data with
the state of a hidden Markov model (HMM). However, there is
a difficulty due to the fact that acoustic features vary widely in
frequency and articulation rate depending on harmonics of the
vocal tract and characteristic speaking styles.

Efforts to effectively handle these variations can be catego-
rized into feature-level and model-level approaches. Amongst
feature-level approaches, speaker-adapted methods such as fM-
LLR [5] have been proposed. Acoustic features concatenated
with i-vectors, which represent speaker information, also have
been employed as input for DNNs [6], [7]. Model-level ap-
proaches have employed hybrid NN-HMM systems with convo-
lutional neural networks (CNNSs) [8]-[10] and recurrent neural
networks (RNNs) [11]-[13].
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In particular, CNNs have advantages in terms of capturing
local features through weight sharing while remaining robust to
slight translations of these features through pooling. Structural
advantages of CNNs enable the modeling of speech data with-
out feature-level engineering, such as spectrograms or mel filter-
banks. Previous researchers introduced time-delayed neural net-
works (TDNNs), which are CNNs with convolutions along the
time axis to learn the temporal dynamics of features [14]-[16].
Other researchers have applied convolutions along the frequency
axis to attain invariance to frequency-shifts [8], [17]. However,
acoustic features of speech vary in frequency, so that weight
sharing along the frequency axis may not be appropriate. The
limited weight sharing method in which weights are convolved
only within a subsection of frequency-bands has been employed
in efforts to overcome this problem [10]. However, settling on
appropriate band divisions and filters will require further work.

One limitation common to the preceding approaches is that
most of them have employed only one or two convolution and
pooling layers. Another limitation is that the relationship or
topography of filters trained in supervised learning has not been
intensively investigated. For unsupervised feature extraction,
previous researchers imposed sparsity terms over small groups
or neighborhoods in feature maps of image [18]-[20] and speech
data [21], [22]. They attained topographically-organized maps
of smoothly varying oriented edge filters or tonotopic disordered
topography of spectrotemporal features, such as those found in
the primary visual or auditory cortex (V1, Al), respectively.

In this paper, we argue that convolution along the time axis
is more effective than along the frequency axis for acoustic
models. In order that the network learns temporal dynamics ad-
equately, we increase the depth of convolution layers that have
small filters. Instead of frequency-axis convolution and pooling,
we propose the addition of a convolutional maxout layer, namely
an intermap pooling (IMP) layer in order to increase robustness
to spectral variations. Previously, a convolutional maxout net-
work has been proposed [23], however, it applied convolutions
along the frequency axis. We show that the IMP CNNs with the
time convolution reduce the word error rates more. As a result,
the IMP CNNs can both model temporal dynamics and remain
robust to spectral variations.

II. CONVOLUTION NEURAL NETWORKS (CNNS)

CNNs consist of the alternation of convolution and pooling
layers, and fully connected layers in the top-most layer. Let H()
stand for input to the [th convolution layer having K filters,
with the kth convolution filter denoted Wé,l) € RM*NXG with
M and N denoting a filters height and width, respectively, and
G designating the number of feature maps of the input. A bias
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Fig. 1. Illustration of a convolution layer followed by an intramap pooling
layer or an IMP layer. The sizes of convolution filters and feature maps are
denoted as ‘(the freq. axis) x (the time axis)x (the feature axis)’. The number of
filters is denoted after ‘@’. The pooling size is denoted as ‘(the freq. axis):(the
time axis):(the feature axis)’. The convolution input is padded with zeros at both
ends in the time axis in order to preserve frame length after convolutions.

term bif) is shared inside the kth feature map. Thus, from any
input H")| the output H"*1) € R7*/*K can be calculated as

r(l+1 l l
Hi =1 ((H(” * Wi )i +b§<))

(for1<i<I,1<j<.J) (1)

where I and J are height and width of each output feature map,
and f is a nonlinear function such as sigmoid or rectified linear
unit (ReLU).

An intramap pooling layer, typically called “max-pooling,”
propagates the maximum value from each subregion in each
feature map. For nonoverlapping subregions with height p and
width ¢, the output from this pooling layer is given by
()

= maxe: ot Hiprasoran: @

(0
Hi i

Intramap pooling layers have blurring effects on feature maps,

with the result being that the CNN is more robust to locally
translated features.

III. INTERMAP POOLING (IMP) LAYERS

There are several categories of acoustic features such as har-
monics, formants, and on/offsets (i.e., start and end points of
speech). Spectral variations of acoustic features appear as shifts
in the frequency axis over time (spectrotemporal modulation).
In order to ensure the robustness of our model to spectral varia-
tions, we propose the addition of a convolutional maxout layer,
the IMP layer. Like the maxout networks [24], this layer groups
the filters, and pools the feature maps inside a group.

Specifically, an IMP layer partitions feature maps into a set of
groups. Then, each group propagates the maximum activation
value at each position. Formally, the output of the kth group
consisting of r consecutive feature maps is given by

HEQj,k) = maX7=*7'+17<-~~,0H8?jﬁkr+»,f)' 3)
The structural comparison of intermap and intramap pooling
layers is shown in Fig. 1. Note that the method pursued in this
paper does not introduce any additional learning terms except
for the intermap grouping of filters.
The central idea to the IMP CNN is that the filters in each
group learn common but spectrally variant features, such as
frequency-shifted harmonics, and the pooled feature map is
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invariant to those feature variations within the group. The
pooled feature maps H() are representative of the feature
maps in each group. Through supervised learning, the pooled
feature maps become discriminative of features for recognizing
phonemes. For a phoneme, since spectral variations among
different speakers and utterances are not discriminative
information, the individual filters in a group spontaneously
represent common but spectrally variant features, even though
the layer does not ensure this.

IV. DEEP CNN ARCHITECTURE FOR ACOUSTIC MODELING

Since short-term temporal dynamics are shared within ev-
ery frame of a given speech sample, sharing filters along the
time axis is reasonable. However, sharing filters along the fre-
quency axis may not be suitable, because features within lower
frequency-band regions are significantly different from those in
the higher regions. Instead of convolution along the frequency
axis, our architecture employs an IMP layer following the first
convolution layer. This approach demonstrates robustness not
only to frequency-shifted features but also to spectrotempo-
rally distorted features. Moreover, it does not require engi-
neered efforts to consider the varying characteristics of different
frequency-bands.

A sufficiently deep depth of convolution and pooling layers is
necessary to precisely represent complex acoustic features with
temporal and spectral variations. Individual frames also should
be labeled as minutely as the number of HMM states, which
is more than thousands in tri-phone modeling. However, con-
text windowed inputs are too tiny (e.g., 21 frames) and stacking
multiple intramap pooling layers decreases the feature map size
in proportion to the pooling size, thereby restricting the depth
of CNNs. Since previous researchers have chosen large convo-
lution filter and intramap pooling sizes, sufficient increases in
depths of CNNs have not been realized.

As illustrated in Fig. 1, the IMP CNN architecture applies
convolution and intramap pooling layers only along the time
axis. The pooling size of the intramap pooling layers is small so
that it does not decrease temporal resolution much. Furthermore,
motivated by the performance of very deep CNNs [25], we
inserted convolution layers with small filters (of size 1 x 3)
between two intramap pooling layers. The combination of filters
before pooling layers increases nonlinearity, and this results in
a network that has rich feature expressions.

V. EXPERIMENTAL RESULTS
A. Experiments Setup

We conducted experiments using the 300 h Switchboard-I Re-
lease 2 (SWBD) dataset [26] which is conversational telephone
speech task as well as the Wall Street Journal (WSJ) corpus
[27] and Aurora4 database which are read speech. We used the
81-h training dataset (SI-284) of the WSJ corpus. The Aurora4
database is a subset of the WSJ in which clean utterances are
added with different noise types and/or convolved with micro-
phone distortions. The following results are for the trained IMP
CNN on the multiconditioned training dataset.
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Fig. 2. Configurations of CNN architectures for SWBD. The ReLU nonlin-
earity function is used on the top of every activation. We made 6, 9, 12, and 15
layers by excluding or repeating the blue colored layers. For WSJ and Aurora4
datasets, the fully connected layers have smaller hidden neurons, and remainder
are the same.

The raw speech signal is processed via short-time Fourier
transform (STFT) with a 25 ms Hamming window and 10 ms
window shifts. We used 40-dimensional (40-D) log-mel filter
bank features without the energy coefficient, and concatenated
frames with a context window size of 21 (£10 frames) to feed
them into networks as inputs. We trained the GMM-HMM sys-
tem over fMLLR features. The forced alignment of each frame
by the GMM-HMM baseline system is the target label of the
neural networks.

After random initialization of weights and biases from the
Gaussian distribution A/(0, 0.01) and N0, 0.5), respectively,
the CNNs were optimized by the stochastic gradient descent
(SGD) method. In particular, for CNNs deeper than nine-layers,
we faced with infeasible training, because each layer back-
propagates errors by multiplying its small initial weights, result-
ing in vanishing gradients. Therefore, we increased the standard
deviation (o) of the Gaussian distribution in lower layers. Each
layer is trained with a momentum of 0.9, an L2-decay term of
0.0005, and minibatch size of 512. After one epoch of training,
the trained model is accepted if the validation cost decreases.
Otherwise, the trained model is rejected and training starts again
from the latest accepted model with a halved learning rate. The
initial learning rate is 0.01, and the training stops after 50 epochs.
Our implementation is developed upon the KALDI toolkit [28].

For the SWBD task, we decode speech using a trigram lan-
guage model (LM) of 30k vocabularies which is trained on 3M
words, and then we rescore the decoding results using 4-gram
LM which is trained on Fisher English Part 1 transcripts [29].
For the WSJ and Aurora4 corpus, we used a 146K word ex-
tended dictionary and the trigram pruned language model which
is exactly the same as the “s5” recipe in the KALDI.

B. Convolution Axis and Depth of CNNs

Fig. 3 shows the decoding results of CNNs on SWBD eval-
uation sets with various depths, from 6 layers up to 15 layers
(configurations are described in Fig. 2). Deeper CNNs pro-
duced lower WERs, with the 15-layer CNN achieving a WER
of 12.8% for SWB and 18.6% for total evaluation sets. More-
over, it is validated that convolution along the time axis always
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Fig. 3.

Decoding results of CNNs on the Switchboard evaluation sets

(Hub5°2000). CNNs with different convolution axis (time, frequency) and in-
put features (log-mel, fMLLR) are compared. (a) Switchboard subset (b) Total

(SWB and CallHome).

TABLE I
WERS(%) OF CNNSs WITH AN IMP LAYER AND AN OVERLAPPING IMP
(IMPO) oN SWBD
Network SWB Total
9L 13.2 18.8
9L-IMP(128,2) 13.2 18.8
9L-IMP(256,2) 13.2 18.7
9L-IMP(512,4) 12.7 18.5
9L-IMP(768,6) 12.9 18.7
9L-IMPO(512,4) 13.0 18.6
TABLE II
IMP IN DIFFERENT CONVOLUTION AXIS
SWB Total
9L 9L-IMP 9L 9L-IMP
log-mel (time) 13.2 12.7 18.8 18.5
log-mel (freq.) /4.4 14.7 204 20.7
fMLLR (time) /3.3 13.5 19.0 19.1

outperforms convolution along the frequency axis. Furthermore,
CNN:ss trained over log-mel features had lower WER as fMLLR
features when CNN has more than nine layers. These results
show that weight sharing along the time axis more effectively
reduces the WER, and that increased nonlinearity obviates pre-
processing for speaker adaptation.

C. IMP CNNs

Decoding results of IMP-CNNs with different numbers of
maps and pooling sizes are compared in Table I. We further in-
vestigated an IMP layer in which groups overlap (IMPO) each
other with a stride of one. All CNNs with an IMP layer per-
formed better than the 9-layer CNN without. Especially, the
“OL-IMP(512,4)” CNN performs the best with a WER of 12.7%
for SWB test set, showing a 3.78% relative improvement over
the 9-layer CNN. Note Table II that when the IMP layer is ap-
plied to CNNs along the frequency axis or over fMLLR features,
performance declines. In addition, IMP CNN performed well on
the WSJ and Aurora4 corpus as shown in Tables III and IV, re-
spectively. Itis remarkable that IMP layers contribute robustness
to spectral variations in both clean and noisy conditions.



LEE et al.: DEEP CNNS ALONG THE TIME AXIS WITH INTERMAP POOLING FOR ROBUSTNESS TO SPECTRAL VARIATIONS

TABLE III
WERS(%) OF CNNs WITH AN IMP LAYER ON WSJ

9L OL-IMP  Rel. (%)
Eval’92 427 3.93 7.96
TABLE IV

WERS(%) OF CNNS WITH AN IMP LAYER ON AURORA4

Clean  Noise  Channel  Channel+Noise  Avg.
9L 3.36 7.05 8.14 18.05 11.58
9L-IMP 3.14 6.64 7.86 17.88 11.29
Rel. (%) 6.55 5.82 3.44 0.92 2.50
(a) ; | |- (1) Harmonics at low
3 | | - . freq. extractor
H | (2) Harmonics at high
3 . freq. extractor
|E + (3) On/off detector
8 | 1  (4) Gabor-like filters
Time (1) (5 3) @ (2 (5) Formant-change
(b A group of four filters —~— detector

A

— 1D Topological map axis Overlapping poolin,

Fig. 4. Trained filters of the first convolution layer. (a) Filters of the 9-layer
CNN. The top 22 filters that have the biggest L2-norm are sorted in decreasing
order. (b) 10 groups of four filters in “OL-IMP(512, 4)”. The order of groups
(red boxes) is arranged according to the feature category of each group. (c) A
part of successive filters in “OL-IMPO(512, 4)”.

D. Analysis on Learnt Filters

Learnt filters of the first convolution layer are visualized in
Fig. 4(a). There are five categories of spectrotemporal features
in the filters. (1) Harmonic features are narrow in the low
frequency-region and (2) broad in the high-frequency region.
(3) The on/off-set detecting filters are temporally selective, but
are also sensitive to several frequencies. (4) The features of
Gabor-like filters are centered on some frequency-bands, which
presumably detect formants (5). The features of formant changes
are directional diagonal lines, spectrotemporal modulations, in
the middle frequency-bands. Note that different features appear
in different frequency-bands, and that local features of each type
have different bandwidth sizes.

The trained filters in each group of the IMP layer are presented
in Fig. 4(b). Importantly, most filters in a group belong to a
common category. For example, the filters in harmonic extractor
and formant change detector groups have marginally shifted
features on the frequency axis. This figure verifies that the IMP
lead the filters of a group to extract common but spectrally
variant features, although there are no additional architectural
constraints to guarantee this.

The consecutive trained filters of the IMPO layer are drawn
in Fig. 4(c). The filters form a 1-D topological map, where
neighboring filters respond to similar spectrotemporal features.
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TABLE V
COMPARISON OF WERS(%) FOR DIFFERENT MODELS ON SWBD

Input features Model SWB  Total
fMLLR GMM-HMM 19.5 26.7
Maxout 7L 142 20.0
log-mel filterbanks Maxout 7L 14.6 20.7
CNN 9L 13.2 18.8
CNN 9L-IMP(512, 4) 12.7 18.5
CNN 15L 12.8 18.6
MEFCC + i-vectors TDNN 4L [16] 12.9 19.2
VTL-warped log-mel CNN 8L (2conv+6fc) [34] 12.6 -
CNN 13L (10conv+3fc) [35] 11.8 -

Along the topological map axis, filters appear discontinuously
between feature categories, reflecting the fact that feature cat-
egories become definitely distinguishable to the system as it is
trained. In recent neurophysiological studies, there is consen-
sus that multiple tonotopic maps exist in the human auditory
system [30]. However, a few studies suggest that this topogra-
phy includes other sound features, such as temporal, spectral,
and joint modulations [31]-[33]. The trained topography may
provide a clue as to how human auditory neurons organize to
efficiently process information in Al.

E. Comparison of the IMP CNN

For comparison, we trained max-out networks that have seven
layers with 2000 hidden neurons and 400 groups on both fMLLR
and filter-bank features. The comparison of the decoding results
is summarized in Table V. The “9L-IMP(512, 4)” IMP CNN
improved on the GMM-HMM baseline (19.5%) and the max-out
network (14.6%), demonstrating a 34.87% and 13.01% relative
improvement, respectively. Also, it performs on par with a 15-
layer CNN, i.e., a nonIMP CNN with six additional convolution
layers. Finally, the IMP CNN is compared with the TDNN
[16] and the CNNs which employed 2-D convolutions [34],
[35]. Note that we only compare other previous results without
any sequence training such as sMBR. Even though our deep
CNN did not use any speaker adaptation techniques, it yielded
a comparative word error rate simply by employing IMP and by
increasing depths.

VI. CONCLUSION

In this paper, the present experiments demonstrate that con-
volution along the time axis is more effective than along the
frequency axis when processing speech. Depth in convolution
layers is crucial for the sufficient representation of the complex
temporal dynamics inherent in the acoustic features of speech.
In order to achieve greater robustness to spectral variations in
speech recognition, we proposed the addition of IMP to CNNs.
Through visualization of the trained filters, we verified that fil-
ters grouped together learn similar spectrotemporal features and
form a topological map. In the end, even without any speaker
adaptation techniques, the proposed IMP CNN delivered com-
petitive performance on the Switchboard, WSJ, and Aurora4
databases.
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