A Deep Chatbot for QA and Chitchat
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l. Introduction

« Goal: Design an intelligent and natural
conversational article-based agents

« Approaches
= Coarsely assume users have two dialog acts

= Developing a modular chatbot consisting of
Dialog-act classitier(DA), Question-answering(QA) and
Chitchat(CC)

lll. Question-Answering

e Passage Retriever

= Users often ask questions beyond the given passage

— Find related supplementary passages from the collected
Wikipedia database (top 10k articles by PageRank), using BM25F
algorithml2l

= Thefound relevant passages are also fed into the PQMN

« Passage-Question Matching Network (PQMN)

= Find an answer span in the given passages according to the
question by matching(attention) passage and question

= Trained on SQUAD datasets
= PQMN architecture: Ansver
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ll. Dialog-act classifier

» QA/CC Classification using CNN 1
= Trained on SQUAD(QA) and OpenSubtitles(CC)
= Achieving the accuracy of 98.7%
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Exact matching
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V. Chit-chat

Ensemble of Template-based and Neural-based

models

= Generic answer generation problems of the NN-based model

= Answer selection between template- and neural-based answers
based on the template matching result

= About 57.5% and 42.5% responses from template-based
and NN-based model respectively

Template-based response model

= Retrieve aresponse via template matching
= Template sources: from ALICE 4l + manually designed 161 rules
= Employing memories for predefined categories (name, job, etc.)

Example

- (input) I am a policeman.
- <pattern>|AM A "</pattern>

- <template>| have a lot of respect for those who wear a badge.
<set name="job">POLICEMAN</set> </template>

Neural-based response generation

= (Generate a natural language response
given the message.

= RNN Encoder-Decoder ]
- LSTM 2 layers with 2048 hidden units

= Trained on Dailydialog datasets

- 9.8k vocabularies
- PPL of the validation set: 36.99
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