A Deep Chatbot for QA and Chitchat

Tema kAlb:

Geonmin Kim^{*1}, Hwaran Lee^{*1}, CheongAn Lee², Eunmi Hong³, Byeonggeun Kim¹, Soo-Young Lee¹

¹School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), ²AIBrain, ³Crosscert

*The authors are equally contributed

Max-over

Conv. layer

([3,4,5]*128)

Word embedding

(128)

Exact matching

(0/1)

time pooling

Overall Framework

I. Introduction

- Goal: Design an intelligent and natural conversational article-based agents
- Approaches
 - Coarsely assume users have two dialog acts
 - Developing a modular chatbot consisting of Dialog-act classifier(DA), Question-answering(QA) and Chitchat(CC)

II. Dialog-act classifier

- QA/CC Classification using CNN^[1]
 - Trained on SQuAD(QA) and OpenSubtitles(CC) FC layer (512*1)
 - Achieving the accuracy of 98.7%
- Manually labeled ConvAI dataset
 - 8k utterances, resulting in 8.6% of QA and 91.4% of CC
 - Additional training and achieving 91% test accuracy on ConvAl dataset

III. Question-Answering

- Passage Retriever
- Users often ask questions beyond the given passage

⇒ Find related supplementary passages from the collected Wikipedia database (top 10k articles by PageRank), using BM25F algorithm^[2]

- The found relevant passages are also fed into the PQMN
- Passage-Question Matching Network (PQMN)
- Find an answer span in the given passages according to the question by matching(attention) passage and question
- Trained on SQuAD datasets

IV. Chit-chat

- Ensemble of Template-based and Neural-based models
 - Generic answer generation problems of the NN-based model
 - ⇒ Answer selection between template- and neural-based answers based on the template matching result
 - About 57.5% and 42.5% responses from template-based and NN-based model respectively
- Template-based response model
 - Retrieve a response via template matching
 - Template sources: from ALICE ^[4] + manually designed 161 rules
 - Employing memories for predefined categories (name, job, etc.)
 - Example

F1

0.7783

- (input) I am a policeman.
- <pattern>IAMA *</pattern>

References

[1] Y. Kim et al., "Convolutional Neural Networks for Sencente Classification", ACL, 2014 [2] J. R. P. Aguera et al., "Using BM25F for Semantic Search", ISSW, 2010 [3] D. Chen et al., Reading Wikipedia to Answer Open-Domain Questions. ACL, 2017. [4] R. S. Wallace, "The Anatomy of A.L.I.C.E, Parsing the Turing Test", 2009 [5] O. Vinyals et al., "A Neural Conversational Model", ICML Deep Learning workshop, 2015

- <template>I have a lot of respect for those who wear a badge. <set name="job">POLICEMAN</set> </template>
- Neural-based response generation
 - Generate a natural language response given the message.
 - RNN Encoder-Decoder^[5]
 - LSTM 2 layers with 2048 hidden units
 - Trained on Dailydialog datasets
 - 9.8k vocabularies
 - PPL of the validation set: 36.99

Acknowledgement This work was supported by Institute for Information and communications Technology Promotion funded by the Korea Ministry of Science, ICT & Future Planning. [2016-0-00562(R0124-16-0002)]