I. Introduction

- Goal: Design an intelligent and natural conversational article-based agents

- Approaches
 - Coarsely assume users have two dialog acts
 - Developing a modular chatbot consisting of Dialog-act classifier (DA), Question-answering (QA) and Chitchat (CC)

II. Dialog-act classifier

- QA/CC Classification using CNN [1]
 - Trained on SQuAD (QA) and OpenSubtitles (CC)
 - Achieving the accuracy of 98.7%

- Manually labeled ConvAI dataset
 - 8k utterances, resulting in 8.6% of QA and 91.4% of CC
 - Additional training and achieving 91% test accuracy on ConvAI dataset

III. Question-Answering

- Passage Retriever
 - Users often ask questions beyond the given passage
 - Find related supplementary passages from the collected Wikipedia database (top 10k articles by PageRank), using BM25F algorithm [2]
 - The found relevant passages are also fed into the PQMN

- Passage-Question Matching Network (PQMN)
 - Find an answer span in the given passages according to the question by matching (attention) passage and question
 - Trained on SQuAD datasets
 - PQMN architecture:

IV. Chitchat

- Ensemble of Template-based and Neural-based models
 - Generic answer generation problems of the NN-based model
 - Answer selection between template- and neural-based answers based on the template matching result
 - About 57.5% and 42.5% responses from template-based and NN-based model respectively

- Template-based response model
 - Retrieve a response via template matching
 - Template sources: from ALICE [4] + manually designed 161 rules
 - Employing memories for predefined categories (name, job, etc.)
 - Example:
 - (Input): I am a policeman.
 - (Pattern): I AM A *
 - (Template): I have a lot of respect for those who wear a badge.
 - (set name="job">POLICEMAN</set>)

- Neural-based response generation
 - Generate a natural language response given the message.
 - RNN Encoder-Decoder [5]
 - LSTM 2 layers with 2048 hidden units
 - Trained on Dailydialog datasets
 - 9.8k vocabularies
 - PPL of the validation set: 36.99

References

Acknowledgement This work was supported by Institute for Information and communications Technology Promotion funded by the Korea Ministry of Science, ICT & Future Planning. [2016-0-00562(00124-16-0002)]