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Rescoring of N-Best Hypotheses Using Top-Down
Selective Attention for Automatic

Speech Recognition
Ho-Gyeong Kim , Hwaran Lee, Geonmin Kim, Sang-Hoon Oh, and Soo-Young Lee

Abstract—In this letter, we propose an N-best rescoring sys-
tem that integrates attentional information for locally confusing
words extracted from alternative hypotheses to a conventional
speech recognition system. The attentional information is derived
by adapting a test input feature for the word of interest, which is
motivated by the top-down selective attention mechanism of the
brain. To rescore the competing hypotheses, we define a new confi-
dence measure that contains both the conventional posterior prob-
ability and the attentional information for the confusing words. In
addition, a neural network is designed to provide different weights
within the confidence measure for each utterance. The network
is then optimized to minimize the word error rates. Tests on the
Wall Street Journal and Aurora4 speech recognition tasks were
conducted, and our best results achieve a word error rate of 3.83%
and 11.09%, yielding a relative reduction of 5.20% and 2.55% over
baselines, respectively.

Index Terms—Continuous speech recognition, N-best rescoring,
parameter optimization, top-down selective attention.

I. INTRODUCTION

THE standard criterion for speech recognition hypotheses
aims to maximize a posterior probability (MAP) of the

hypothesis over an utterance for a given acoustic and language
model. Recent advances in the field of deep learning [1]–[4] have
resulted in a number of changes in the design of acoustic and
language parts in automatic speech recognition (ASR) systems.
In particular, for acoustic modeling, both deep convolutional
neural networks (CNNs) [5]–[8] and recurrent neural networks
(RNNs) [9]–[12] have been successfully used for continuous
speech recognition tasks instead of Gaussian mixture models
(GMMs). Moreover, in an attempt to reduce the gap between
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training and test criteria, task loss optimization methods have
been introduced [10], [13] to directly minimize word error rate
(WER) in end-to-end learning frameworks.

Rescoring approaches to integrate speech information into
the system have been explored in the literature. Most existing
speech rescoring studies have focused on rescoring an N-best
list or lattice with a large language model [16], [17] or with
additional knowledge. Several researchers have attempted to
employ knowledge sources (e.g., word posteriors [19], prosody
[20], articulatory phonology [21]–[23], and morphology [24])
into ASR systems. The scores corresponding to the knowledge
sources were generated from neural network based classifiers
[22], [23] or task-specific designed probabilistic models [20].
However, the knowledge-based information is unmanageable
when the additional knowledge (e.g., phone boundaries for the
articulation attributes [21], [22]) is expensive to compute. In ad-
dition, the weights for different knowledge scores in a rescoring
formula also have been introduced. These weights are opti-
mized by minimizing the empirical sentence error [14], word
error [18] or empirical risk [25] using a grid or gradient search.
While most studies define the same weights for all utterances,
optimal weights may differ for each utterance.

In cognitive science, a top-down selective attention (TDSA)
mechanism of humans has been studied for decades [26]–[29]
and is known to be controlled by “objects” in our mind via feed-
back processes. This cognitive process enhances the perceptual
saliency of a response to the object of interest and filters out
irrelevant responses. The engineering models using TDSA have
been proposed for out-of-vocabulary rejection [30], and isolated
word recognition [31]. In this work, we apply the TDSA mech-
anism to the N-best rescoring framework to provide attentional
information of confusing words within competing hypotheses.
The TDSA mechanism is applied to adapt a test input feature for
several confusing words. The attentional information required
to rescore the hypotheses is then derived as the probability of
the adapted features and the amount of feature deformation.

Recently, numerous neural network models with attention
have been developed and successfully applied to diverse tasks.
The sequence to sequence learning framework [32] with atten-
tion has become especially popular for sequence labeling tasks
such as neural machine translation [34], image caption gen-
eration [33], and speech recognition [35]. While predicting a
soft-window over input sequences corresponding to output tar-
gets in previous attention works, our attention approach adapts
a test input feature “directly” using a gradient to maximize the
probability of the feature given target words. Therefore, our
system provides the most probable feature of the target words
without the need to train extra attention networks.
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Fig. 1. (a) Proposed system consists of three main blocks: A conventional
ASR system, the TDSA module, and the rescoring module. (b) Diagram of
target sets and confusing frame intervals using a word matrix. (c) Architecture
of the weight network for rescoring weights γ, λ, and αl .

Fig. 2. Example of TDSA. The input feature (a) of a test utterance with a
true transcription “SEE” is updated via TDSA processes with respect to “SUE,”
“SUIT,” and “SEE” [from (b) to (d)]. The difference between x and x̂ from
(e) to (g) indicate that there is a minimal feature deformation for the true target.

Finally, we emphasize that the proposed rescoring system has
three main contributions: 1) Additional information from exist-
ing acoustic models is derived without any other knowledge
source, which is motivated from the TDSA mechanism of the
brain. 2) “Data-dependent” rescoring weights are used. 3) More-
over, our system helps reduce the mismatch between a word-
based evaluation criterion, WER, and the standard sentence-
based decision rule, MAP, by attempting to distinguish locally
confusing words from the ASR hypotheses.

II. SYSTEM OVERVIEW

A. TDSA Module

1) Confusing Words From an N-Best List: We initially de-
termine a word matrix given the N-best list and their forced
word alignments from a lattice, as shown in Fig. 1(b). We then
extract the confusing frame intervals t when multiple words
appear along the N-best axis. The target words w within t are
determined as sets of locally confusing words, namely the target
set D, by extracting a word or words along the N-best axis. In
addition, we set the confusing intervals to the maximum length
for all the confusing words in the same D set.

2) Feature Adaptation Using TDSA: The adaptation of input
feature x is done by maximizing the log-likelihood ln p(x|s).
The expected input feature x̂j

t for the target wj and time t is

x̂j
t = argmax

xt

ln p
(
xt |sj

t

)
, (1)

where sj
t is one of output classes of the acoustic model for target

wj . Because it is impossible to analytically solve (1), we use

a gradient ascent method using x̂ = x + η (∂ ln p(x|s)/∂x)
based on an error back-propagation procedure in a top-down
manner. In this process, the acoustic model forces the input
feature to be adjusted to the target words.

However, as the above attention process continues, x̂ over-fits
to the most likely feature of the target words. Therefore, we cal-
culate the stopping log-likelihood to define a stopping criterion
for each word in the dictionary. The histograms of the log-
likelihoods a for the words are first calculated from a training
set. We then utilize the value of the empirical cumulative distri-
bution function F (a) based on the histogram as a stop parameter
p. Finally, the log-likelihood value corresponding to a specific
value of p is used as the stopping log-likelihood a∗ for each word
(i.e., a∗ = F−1 (p)). If the target contains several words, we use
the average of the stopping log-likelihoods for the words.

B. Rescoring Module

1) Confidence Measure (CM): As a rescoring criterion for
the N-best hypotheses using the attentional information from
the TDSA module, we propose a CM, including the posterior
from the conventional ASR system, posterior given the adapted
feature, and the amount of feature deformation caused by TDSA.
The TDSA process finds the most probable feature x̂ for the
target near the input feature x. If an input feature x of a test
utterance is adapted to the wrong target words, x̂ will become
quite different from x. Therefore, the distance between x and x̂
is also regarded as an important measure to make a decision.

From this point of view, the ith CM is defined as

ci =P (Wi |X)1−γ P
(
Wi |X̂i

)γ exp
(
−λ

(∑
l
αld

(̂
h(l)

i ,h(l)
)))

for 0 ≤ γ ≤ 1, λ ≥ 0, and
∑

l

αl = 1. (2)

Here, i is the hypothesis index and P (Wi |X) is the original
posterior probability of the ith word sequence given the input
feature (including acoustic and language scores). In addition,
P (Wi |X̂i) is the ith posterior given the whole adapted feature
X̂, which is determined by changing x to x̂ for all D. Parameter
γ controls the relative importance between the two and λ is the
weight on the total difference. Moreover, ĥ(l) and h(l) are the lth
layer outputs, which are propagated from X̂ and X, respectively.
Finally, d is the feature difference with weight αl .

2) Optimization of the Rescoring Weights: As mentioned
above, the optimal values of the rescoring weights in the
CM may differ for each utterance. Hence, we design a neu-
ral network, namely the weight network, which helps provide
data-dependent weights γ, λ, and αl as shown in Fig. 1(c).
The proposed network consists of a bidirectional RNN and a
multilayer perceptron (MLP). The input of the network con-
sists of the feature xt inside the confusing intervals and the
output represents the weight parameters. Specifically, to satisfy
the conditions of the weight parameters in (2), the following
nonlinear functions are used for the network output: sigmoid
for γ, softplus [36] for λ, and softmax function for αl .

The weight networks for γ, λ, and αl are optimized by choos-
ing one of the competing hypotheses that has the minimum
WER of all the hypotheses. The cross-entropy criterion is used
as the objective function:

JCE = −
∑

u

N∑
i=1

(
l
(u)
i ln p

(u)
i +

(
1 − l

(u)
i

)
ln

(
1 − p

(u)
i

))
(3)
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Fig. 3. Configurations of the CNN architectures for WSJ and Aurora4.
“Conv,” “MaxPool,” and “Dense” denote convolutional, max-pooling, and fully-
connected layers, respectively.

Fig. 4. Example of the rescoring system. (a) Color-coded word matrix and
confusing intervals (black bold lines). (b) Log-likelihood curve and stopping
points of the targets (red dots). (c) and (d) Initial and adapted features of the true
hypothesis. (e) Bar plots of the terms in the CM for each hypothesis, indicating
that the minimal feature deformation after the adaptation is also important for
similar probabilities before and after adaptation.

where u is an utterance index, pi is the normalization
of a log-scaled ci with a softmax function (i.e., pi =
eln ci /

∑N
i ′=1 eln ci ′ ), and li is the hard class label, which is

coded when the ith word error of that hypothesis has a mini-
mum value over all the competing hypotheses. Then, the error
signals of weights γ, λ, and αl for an utterance are derived as

∂JCE

∂ {γ, λ, αl} = −
N∑

i=1

(
li − pi

1 − pi

)

×
(

∂ ln ci

∂ {γ, λ, αl} −
∑N

i′= 1 eln ci ′ ∂ ln ci ′
∂{γ ,λ,α l }∑N

i′= 1 eln ci ′

)

where ∂ci/∂γ = lnP (Wi |X̂i) − lnP (Wi |X),

∂ci/∂λ = −
∑

l
αld

(l)
i , and ∂ci/∂ αl = −λd

(l)
i . (4)

The model parameters of the network are trained through
standard error-back propagation using (4), which is regarded as
the error at the network output. If several target sets exist (i.e., a
number of D) for a test utterance, the outputs of different target
sets are averaged for the final network output and the model
parameters are shared for different D sets while the network
was originally designed for a single D set.

Finally, the system rescores the N-best list for a test utterance
based on the proposed CM using the outputs γ, λ, and αl of the
trained weight network and provides the top word sequence.

III. EXPERIMENTS

We report a series of experiments using the Wall Street Journal
(WSJ) [37] and Aurora4 [38] speech corpora, which are large
vocabulary continuous speech recognition tasks. We used the

TABLE I
WERS [%] OF THE RESCORING SYSTEMS ON THE WSJ

System Top-1 Top-2 Top-3 Top-4 Oracle

Baseline 4.27 2.94 2.55 2.23 2.04
+ Rescoring (empirical) 4.09 2.78 2.49 2.23
+ Rescoring (weight net.) 3.96 2.79 2.48 2.21
+ sMBR training 4.04 2.83 2.34 2.00 1.79

+ Rescoring (empirical) 3.93 2.81 2.26 2.07
+ Rescoring (weight net.) 3.83 2.74 2.21 1.94

81-h training dataset (SI-284) of the WSJ corpus. The Aurora4
database is a subset (SI-84) of the WSJ with additive noise and
convolutional distortion. The following results were trained on
the multiconditioned training dataset.

A. ASR Baseline

The raw speech signal was processed via short-time Fourier
transform with a Hamming window of 25 ms and window shifts
of 10 ms. We first trained the GMM-HMM system over the
feature-space maximum likelihood linear regression (fMLLR)
features. The forced alignment of each frame obtained by the
GMM-HMM system is the target label of the neural networks
for acoustic modeling. We used 40-dimensional log-mel filter
bank (LMFB) features without the energy coefficient, and con-
catenated the frames with a context window size of 21 (±10
frames) to feed them into the networks as inputs. The CNN-
HMM hybrid system is trained as the ASR baseline system. The
configurations of the CNN architectures for WSJ and Aurora4
are shown in Fig. 4. Each layer is trained with a momentum of
0.9, an L2-decay term of 0.0005, and minibatch size of 512. We
used a 146 K word extended dictionary and a trigram pruned
language model.

B. System Setting

For the TDSA module, the stopping thresholds for the 146 K
words in the dictionary were determined by observing the his-
tograms of the log-likelihoods from the training speech for each
corpus. For the rescoring module, we use the kullback-leibler
(KL)-divergence from the adapted to the initial input features
is used as the feature difference in the CM. The stop parameter
p was first found using the development set for each corpus
varying from 0.5 to 0.9 using an empirical search. The weight
networks for the rescoring weights were then trained using the
development set. The 40-dimensional LMFB features with a
context window size of 11 frames were fed into the weight net-
work as inputs. The numbers of neurons of the bidirectional
recurrent layers and dense layer were set as 256 and 128, re-
spectively. The activations of forward and backward RNNs were
averaged to be used as the input to the dense layer. The number
of neurons of the output layer is 2 + L, where L is the number
of layers in the CNN. The ASR baseline and proposed system
were developed using the KALDI toolkit [39].

C. Rescoring Results

The performance of the proposed rescoring system is shown
in Tables I and II. The WERs of the “Top-n” are presented
as the recognition results to demonstrate the entire rescoring
performance. The Top-n result of the baseline and proposed
system implies the minimum WER among the n highest pos-
terior probabilities and CM scores, respectively. The “Oracle”
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TABLE II
WERS [%] OF THE RESCORING SYSTEMS ON THE AURORA4

System A B C D Avg.

Baseline Top-1 3.90 7.14 8.01 17.41 11.38
Top-2 2.76 5.68 6.48 15.91 9.91
Top-3 2.02 5.01 5.75 15.10 9.18
Top-4 1.76 4.46 5.45 14.58 8.68

+ Rescoring
(weight net.)

Top-1 3.77 6.73 7.68 17.24 11.09
Top-2 2.34 5.33 6.03 15.50 9.52
Top-3 1.91 4.69 5.51 14.83 8.89
Top-4 1.72 4.37 5.27 14.45 8.56

Oracle 1.61 4.18 5.16 14.22 8.37

is the Top-N performance that is the lower bound WER. In
Table I, the top-1 WER for WSJ was 3.96%, yielding a relative
reduction of 7.26% when N is equal to 5. The overall rescoring
results outperformed the results of the ASR baseline for ev-
ery top-n result. Moreover, the system was achieved a WER of
4.01% and 3.97% when N is equal to 3 and 10, respectively. In
addition, we evaluated the rescoring system based on the ASR
baseline, which is retrained by an sMBR criterion [40]. The final
WER of 3.83% was achieved for the rescoring system, yielding
a relative reduction of 5.20% over the sMBR baseline, indicat-
ing that the acoustic model via sMBR training provides better
acoustic information to rescore the hypotheses. Moreover, the
results show that the adaptation rule still works when testing
adaptation rule and training criterion are not the same. We also
demonstrated an empirical weight search method to show the
effectiveness of the weight network as presented in Table I. The
rescoring system performed well on the Aurora4 as shown in
Table II. For the top-2 results, substantial WER improvements
of 15.5%, 6.16%, 6.94%, and 2.58% were achieved for A to D
sets, respectively. It is remarkable that substantial improvements
of the overall performance are achieved in both clean and noisy
conditions.

D. Comparison With Previous Works

We compared the rescoring results of previous studies on
the WSJ. The system for lattice rescoring achieved a WER of
4.13% using MLPs [22] and 4.0% using DNNs [23]. Although
our system did not use any articulator information from the
designed phonetic feature detectors, it yielded a comparative
word error simply by adapting an input feature for confusing
words using the existing acoustic models without any other
knowledge source and rescoring an N-best list with a smaller
size of hypothesis spaces compared to the entire lattice. In the
end, we compared with other adaptation techniques on the WSJ.
We trained DNNs using fMLLR features with and without i-
vectors, which has the similar number of parameters with the
CNN of the baseline, yielding a WER of 3.99% and 3.83%,
respectively. In addition, we obtained a WER of 4.08% for the
CNN using fMLLR features. Therefore, the rescoring system
delivered competitive performance, where our best WER was
3.83%. It is noteworthy that our system directly adapts the input
features using only the acoustic model without any speaker
adaptation techniques.

E. Analysis on Optimized Weights

During the weight network training, we plotted the initial
weights (red “x” points) and converged weights (yellow “o”

Fig. 5 Example of γ and λ points on the map of cross-entropy (right) and
WER (left) for the development and test set of WSJ, respectively.

points) on the map of the cross-entropy values in (3) and WERs
in Fig. 5. Here, αl are uniformly assigned to all the layers. In the
left figure, the random outputs are initially predicted using the
weight network, but (γ, λ) points are drawn near the minimum
area of the cross-entropy map after the network are optimized.
Comparing the left and right figures, although there is a differ-
ence between the maps of the cross-entropy of the development
set and WER of the test set, the weights, to which the test in-
put features are propagated, are moderately distributed on the
map of the WER. In addition, the converged values of γ and
λ were located around 0.16 and 0.01, respectively. The system
performance degraded when γ = 0 or λ = 0, i.e., when not us-
ing the posterior probability with adapted features or the feature
difference. This result implies that the proposed attentional in-
formation is helpful for improving the system performance with
appropriate γ and λ values.

F. Computational Complexity

The computational complexity for the TDSA module was
compared to the standard feedforward process in terms of the
number of time frames and TDSA epochs. The average values of
the size of the confusing intervals |t| and the number of TDSA
epochs M for all targets in the test set of WSJ were 49.2 and 8.0,
respectively. The average value of the total number of frames
T was 760.3. Therefore, the average complexity of the TDSA
process ( = |t| × M ) is less than half the average complexity of
the feedforward process (=T ) when parallelizing the compu-
tations for all targets per test utterance. Our system focuses on
the locally confusing words, which results in a reduction in the
total complexity.

IV. CONCLUSION

In this letter, we proposed an N-best rescoring system with
acoustic attentional information via the TDSA process. The
TDSA mechanism was used to adapt the input feature by maxi-
mizing the log-likelihood of the feature given confusing words.
In addition, a stopping criterion was employed to avoid overfit-
ting via iterative attention processes. The attentional information
was finally integrated into the conventional ASR system in the
form of the CM. Furthermore, we designed a neural network to
output data-dependent rescoring weights in the proposed CM
and it is optimized by minimizing the WERs. We demonstrated
that the WERs were improved over the baseline on WSJ and
Aurora4, clearly showing that the reranked performance was
meaningful using the proposed CM. Finally, we emphasize that
the proposed system can be applied on the ASR systems that
are capable of generating competing hypotheses and provid-
ing the gradient of the input feature for confusing words. Such
application will improve the recognition results including the
rescoring performance even if the testing adaptation rule and
training criterion are not the same.
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